On Equality in an Upper Bound for the Domination Number with Respect to Nondegenerate Properties

نویسنده

  • Vladimir Samodivkin
چکیده

For a graph property P and a graph G , a subset S of vertices of G is a P -set if the subgraph induced by S has the property P . The domination number with respect to the property P , denoted by γP(G) , is the minimum cardinality of a dominating P -set. Any property P satisfied by all edgeless graphs is called nondegenerate. For any graph G with n vertices and maximum degree ∆(G) , γP(G) ≤ n−∆(G) where P is nondegenerate and closed under union with K1. In this paper we characterize the connected graphs and the connected triangle-free graphs which achieve this upper bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On trees attaining an upper bound on the total domination number

‎A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$‎. ‎The total domination number of a graph $G$‎, ‎denoted by $gamma_t(G)$‎, ‎is~the minimum cardinality of a total dominating set of $G$‎. ‎Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004)‎, ‎6...

متن کامل

Co-Roman domination in trees

Abstract: Let G=(V,E) be a graph and let f:V(G)→{0,1,2} be a function‎. ‎A vertex v is protected with respect to f‎, ‎if f(v)>0 or f(v)=0 and v is adjacent to a vertex of positive weight‎. ‎The function f is a co-Roman dominating function‎, ‎abbreviated CRDF if‎: ‎(i) every vertex in V is protected‎, ‎and (ii) each u∈V with positive weight has a neighbor v∈V with f(v)=0 such that the func...

متن کامل

New results on upper domatic number of graphs

For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an up...

متن کامل

Domination with Respect to Nondegenerate and Hereditary Properties

For a graphical property P and a graph G, a subset S of vertices of G is a P-set if the subgraph induced by S has the property P . The domination number with respect to the property P , is the minimum cardinality of a dominating P-set. In this paper we present results on changing and unchanging of the domination number with respect to the nondegenerate and hereditary properties when a graph is ...

متن کامل

Domination with respect to nondegenerate properties: bondage number

For a graphical property P and a graph G, a subset S of vertices of G is a P-set if the subgraph induced by S has the property P . The domination number with respect to the property P , denoted by γP(G), is the minimum cardinality of a dominating P-set. The bondage number with respect to the property P of a nonempty graph G, denoted bP(G), is the cardinality of a smallest set of edges whose rem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008